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DISPERSION OF DYNAMICALLY PASSIVE IMPURITIES

IN NON-ONE-DIMENSIONAL LIQUID FLOW

UDC 532.542.2A. I. Moshinskii

Equations that describe dispersion of a substance in a non-one-dimensional incompressible liquid flow
through a plane channel are derived. The model under consideration extends the traditional Taylor
model to the case where sources of the substance are present in the flow and relaxation transfer
processes are taken into account. Additional conditions for the dispersion equations are obtained.
The relation between the proposed model and the Taylor model is analyzed. Based on the equations
obtained, the mass transfer between circulation regions in the flow is calculated and a system of
cellular-model equations for stagnant cavities is constructed.

Key words: dispersion of substance, diffusion (Taylor) model, wave model, heat and mass trans-
fer, relaxation phenomena.

Introduction. The Taylor model of longitudinal dispersion of the substance has found wide application in
predicting heat- and mass-transfer processes [1]. This model is based on the effective-diffusion (dispersion) equation
that contains one variable less as compared to the master equation of convective diffusion. In fact, the Taylor
model is an asymptotically substantiated (under certain conditions) averaging of the convective-diffusion equation.
Unlike the initial equation of convective diffusion, the dispersion equation for one-dimensional flows through pipes
of various configurations contains only constant coefficients. This simplification (in view of the broad range of its
practical applications) has aroused considerable interest in the Taylor model, finally resulting in generalization of
this model to the case of more complex heat- and mass-transfer phenomena; in this way, many novel approaches to
the derivation of dispersion equations for a substance have been invented (see, for instance, [2–4]).

Yet, the dispersion equation, as an approximation to the master equation of convective diffusion, has a limited
area of applicability, is incapable of providing required calculation accuracy, and allows no qualitative analysis of
such problems to be performed. The shortcomings of the Taylor model were discussed in many publications (see,
e.g., [5, 6]). The main drawback of the Taylor model is its inapplicability to problems with intense heat and mass
sources. Since the Taylor diffusion model forms the basis for analyzing chemical flow reactors, where an increased
rate of chemical transformations is often desirable, the mentioned drawback is obviously essential. That is why
more general models for relaxation and wave phenomena under the presence of heat and mass fluxes were developed
[5–7]. In the present paper, this model is considered in the general form. Calculations by the proposed model enable
one to solve heat- and mass-transfer problems for non-one-dimensional flows (e.g., for flows in caverns).

1. Derivation of Basic Equations. We consider a plane problem. The mass transfer in a channel of
height h is governed by the equation of convective diffusion

∂c

∂τ
+ u

∂c

∂x
+ v

∂c

∂y
+Q(c) = D

( ∂2c

∂x2
+
∂2c

∂y2

)
(1.1)

and by the continuity equation
∂u

∂x
+
∂v

∂y
= 0. (1.2)
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Generally, the velocity field (u, v) is assumed to be nonuniform and known within the framework of the present
analysis. This field is to be found as a solution of an appropriate hydrodynamic problem. In (1.1), c is the local
concentration, D is the molecular diffusivity, Q(c) is the intensity of the source of mass related, in particular, to
chemical transformations, x and y are the spatial Cartesian coordinates, and τ is the time. The impurity substance
is dynamically passive, i.e., its spreading does not affect the liquid flow in the channel. The velocity field may be
arbitrary, but the no-slip condition should be fulfilled at the channel walls:

u
∣∣∣
y=0;h

= v
∣∣∣
y=0;h

= 0. (1.3)

Below, we will show that some integral characteristics of the velocity field will only be necessary.
The model is supplemented with the initial condition

c
∣∣∣
τ=0

= c0(x, y) (1.4)

and the boundary condition
∂c

∂y

∣∣∣
y=0;h

= 0. (1.5)

The conditions over the variable x are of no use in deriving the simplified system of equations; therefore, for the
time being, their particular form is of no interest. Relations (1.5) express the absence of any flux of the substance
at the channel walls.

Note some difficulties that arise in the numerical analysis of problem (1.1)–(1.5) (with allowance for the
boundary conditions over the variable x) in the case of flows with closed (or almost closed) streamlines. An
important property of such problems is variation of the characteristic time and spatial scales of variables during
the process: boundary layers appear and disappear, the substance concentration levels out along certain directions,
etc. These phenomena cause substantial difficulties in predicting the process in the entire space and over long time
intervals. In fact, different numerical algorithms are to be used to solve one and the same problem in different space–
time regions. The necessity of passing to a new scheme (in the simplest case, to a different step in finite-difference
methods) is hard to notice since the scales of variables vary by orders of magnitude in extreme situations.

The alteration of the mass-transfer mechanism in flows with closed streamlines in a bounded space is also
often observed in other problems similar to those considered in the present study. Heat and mass exchange between
a liquid drop and the surrounding flow has been extensively examined (see, e.g., [8, 9]). In [8, 9], various mechanisms
of mass-transfer alteration and difficulties that arise in the description of the whole process with one model are
discussed. Note also that the methods of problem solution have been many times discussed (see, e.g., [10]) in
connection with discrepancies between results obtained by different authors. An analysis of [8, 9] and other works
shows that the models discussed in [10], and some other models, adequately describe the process only in certain
space–time regions.

Within the framework of the Taylor theory, problem (1.1)–(1.5) can be reduced to the form [11]

∂C

∂τ
+ U

∂C

∂x
+Q(C) =

∂

∂x

[
(D +D∗(x))

∂C

∂x

]
, (1.6)

where U is the mean flow velocity, C is the concentration of the substance averaged over the channel cross section,
and D∗(x) is the convective component of the dispersion coefficient (the total dispersion coefficient is D+D∗). The
mean (averaged over the channel cross section) value of a function F (x, y, τ) is given by the formula

〈F (x, τ)〉 =
1
h

h∫
0

F (x, y, τ) dy. (1.7)

The value of D∗ in (1.6) can be found from the expression

D∗(x) = 〈ψ2〉/D, (1.8)

where ψ(x, y) is the stream function in a coordinate system that moves with a mean velocity U determined from
the equations

u = U +
∂ψ

∂y
, v = −∂ψ

∂x
. (1.9)
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For the sake of convenience, the x direction is chosen to coincide with the direction of the mean velocity vector,
i.e., in what follows, U > 0. Note that the mean velocity U does not depend on the coordinate x. Indeed, relations
(1.2), (1.3), and (1.7) yield

∂U

∂x
=

〈∂u
∂x

〉
= −

〈∂v
∂y

〉
=
v

h

∣∣∣y=0

y=h
= 0,

i.e., U = const (x).
Clearly, for an analysis of general problems, Eq. (1.6) is much simpler than system (1.1), (1.2); yet, the use

of (1.6) is limited to the case of weak sources of the substance Q(C) and sufficiently long characteristic times of
the process. In view of this, we generalize Eq. (1.6) to construct a system of equations defining models similar to
relaxation (or wave) models of longitudinal mixing.

In deriving hyperbolic-type equations for substance spreading, various iteration methods [4, 12, 13], expan-
sion of the solution in terms of certain functions [5], and a generalized Galerkin method [6, 7] were used. The
experience shows that an acceptable approximation of known exact solutions can be obtained using an approxima-
tion containing a system of two equations, which corresponds to two basic function in the Galerkin method. In
particular, Dil’man and Kronberg [5] found with some examples, by means of a comparison with exact solutions,
that allowance for the third term in the Galerkin-type expansions only insignificantly improves the calculation ac-
curacy, whereas the search for the solution becomes more difficult. In view of the aforesaid, we seek the solution of
problem (1.1)–(1.5) in the form of the sum of two functions (truncated series) of the Galerkin method:

c(x, y, τ) = C(x, τ) +R(y)j(x, τ). (1.10)

Here, the first Galerkin expansion function is unity, and the second Galerkin expansion function is the function R(y)
that satisfies the following requirements:

R′(0) = R′(h) = 0, 〈R〉 = 0, 〈R2〉 = 1. (1.11)

In (1.11), the first two relations satisfy the boundary conditions (1.5), and the third relation satisfies the condition
of orthogonality of the functions 1 and R(y) [this condition defines the function C(x, τ) as the concentration of the
target substance averaged over the channel cross section], and the last relation is the normalization condition.

We substitute (1.10) into (1.1); then, according to the Galerkin procedure, we demand that the expression
(residual) obtained be orthogonal to a chosen system of functions [the functions 1 and R(y) in the case under
consideration]. Here, the orthogonality implies that the product of the two functions integrated over y in the
limits (0, h) be zero. After some rearrangements, using (1.2), (1.3), and (1.11), we obtain the system

∂C

∂τ
+ U

∂C

∂x
+

∂

∂x
[K(x)j] +Q(C) = D

∂2C

∂x2
, (1.12)

∂j

∂τ
+ V (x)

∂j

∂x
+K(x)

∂C

∂x
+

[V ′(x)
2

+Q′(C) +
1
ϑ

]
j = D

∂2j

∂x2
, (1.13)

where the parameters K, V , and ϑ are defined by the expressions
K(x) = 〈uR〉, V (x) = 〈uR2〉, ϑ−1 = D〈(R′)2〉. (1.14)

In deriving (1.12) and (1.13), the source function Q(c) in (1.1) was approximated by the truncated Taylor
series Q(c) ∼= Q(C)+Q′(C)Rj. The choice of the point C for the expansion of Q(c) in its vicinity is motivated by the
fact that this quantity defines the first (principal) term in representation (1.10); for this reason, the second term Rj

in (1.10) is a correction one. Note that such an approximation becomes an exact equality if the function Q(c) is
linear (first-order reaction).

If the function Q(C) is a nonlinear, abruptly changing function [the derivative Q′(C) is large], there may
become necessary a closer approximation to the expressions

〈Q(C + jR)〉, 〈RQ(C + jR)〉, (1.15)

which must enter (1.12) and (1.13) instead of the terms Q(C) and jQ′(C), respectively. In some cases, for instance,
for a second-order reaction, for which Q(c) = k2c

2 (k2 = const), the averaging in (1.15) can be performed. We have

k2(C2 + j2), k2(2Cj + j2〈R3〉).
Otherwise, the integrals in (1.15), implied by the averaging procedure (1.7), may have to be calculated.
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2. Relation with the Taylor Diffusion Model. We nondimensionalize system (1.12), (1.13):

∂C

∂t
+
∂C

∂z
+

1
εK Pe∗

∂

∂z
[k(z)j] + Φ(C) =

1
Pe

∂2C

∂z2
; (2.1)

εU

(∂j
∂t

+ w(z)
∂j

∂z

)
+ εKk(z)

∂C

∂z
+

[
1 +

εUw
′(z)

2
+ εQΦ′(C)

]
j =

εU

Pe
∂2j

∂z2
. (2.2)

Here w = V/U [we assume that w = O(1), i.e., the quantity U (we set U 6= 0) serves as the scale of the variable V (x)],
εU = ϑU/L is the parameter indicative of the relative effects of the relaxation time ϑ and the transfer time TU = L/U

on the process, εQ = ϑ/TQ is the ratio between the characteristic relaxation time (ϑ) and the characteristic time
of chemical transformation (TQ), L is the length of the channel, t = τ/TU , and z = x/L. The quantity TQ is
reciprocal to the scale of the reaction-rate derivative dQ/dc (Q and c are dimensional parameters). We denote the
scale of the function K(x) as K∗ [i.e., k(z) is the dimensionless value of K(x)]; then, for the parameter εK , we have
εK = ϑK∗/L. Next, Φ(C) = Q(C)L/U is the dimensionless rate of the chemical reaction [here, the scale of dQ/dc
defines TQ and not the quantity TU that enters the definition of the function Φ(C)) and Pe∗ = UL/(ϑK2

∗) = UL/D∗
since, as is shown below, the quantity ϑK2

∗ is the scale of the Taylor dispersion coefficient. Here, the dispersion
coefficient can be found from the relation D∗ = K2(x)ϑ (D∗ > 0). Thus, Pe∗ is the Peclet number for the convective
component of the dispersion coefficient. The Peclet number based on the ordinary (molecular) diffusivity D can be
found as Pe = UL/D.

Several dimensionless parameters (εU , εQ, εK , Pe∗, and Pe) governing the process as described by sys-
tem (2.1), (2.2) make it possible to consider several simplified (extreme) situations with some limiting relations
held between these parameters and unity. Below, we consider some typical cases, often met in practice, in which
εU � 1, Pe � 1, and Pe � Pe∗, under the assumption that other parameters, if retained in the equations, are of
the order of unity.

The passage to the diffusion model occurs if the parameters εU and εQ are negligibly small, i.e., the shortest
time scale in the system is the relaxation time ϑ, and of interest are processes with the characteristic time TU .
With εU � 1 and εQ � 1, Eq. (2.2) yields j = −[εKk(z)]∂C/∂z, a relation being a kind of dimensionless Fick law;
substitution of this relation into (2.1) yields the dimensionless equation of the diffusion model

Pe∗
(∂C
∂t

+
∂C

∂z
+ Φ(C)

)
=

∂

∂z

[(
D∗(z) +

Pe∗
Pe

)∂C
∂z

]
, (2.3)

where D∗ = k2(z) is the dimensionless Taylor diffusivity.
For the Peclet number Pe∗ to be of the order of unity, the limiting inequality U � K∗ must be fulfilled

at TU � ϑ, i.e., the longitudinal velocity averaged by the first expression in (1.14) must be much higher than the
mean velocity. Rather intense mixing is observed in the system since, by virtue of the third relation in (1.11), the
time-independent velocity component (in particular, U) does not affect the result of averaging in determining K(x),
i.e., here, in fact, the fluctuating velocity is averaged.

It should be noted that, for the inequalities Pe � 1 and Pe � Pe∗, which normally hold, the terms in
the right side of (2.1) and (2.2) can usually be omitted. This also applies to the term in (2.3) that contains the
factor Pe∗ /Pe. Yet, the indicated terms play an important role at the interfaces between the circulation zones,
where the normal component of the flow velocity vanishes and the parameter K and the effective diffusivity D∗
also vanish. The convective motion rather rapidly levels out the concentration of the substance within each closed
circulation zone; nonetheless, because of the equality D∗ = 0, the mass transfer between the zones is conditioned
by ordinary diffusion, i.e., proceeds much more slowly. The convective flow in the contact zones between the cells
just supplies the substance to the interface but does not participate in the transfer through the interface, since the
transport velocity is parallel to the interfacial surface.

At the initial stage, rapid processes with a characteristic scale ϑ are possible. In this case, Eq. (2.1)
supplements the equation similar to the Maxwell relaxation law with a spatially dependent coefficient, yielded
by (2.2) with εU → 0 and εQ → 0

εU
∂j

∂t
+ εKk(z)

∂C

∂z
+ j = 0, (2.4)

where the time-dependent term cannot be ignored over short times.
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Note that the variable j is related to the flux of the substance J as J = K(x)j. We use the variables j
and K separately since these variables are introduced in the theory separately. In addition, the passage to the
variable J for K(x) 6= const in system (2.1), (2.2) somewhat complicates the latter. The passage to the flux J

in (1.12) and (2.4) makes it possible to write the system of relaxation-type equations in dimensional form:

∂C

∂τ
+ U

∂C

∂x
+
∂J

∂x
+Q(C) = D

∂2C

∂x2
, ϑ

∂J

∂τ
+D∗(x)

∂C

∂x
+ J = 0, D∗(x) = K2(x)ϑ.

Normally, the relaxation time ϑ is shorter than the characteristic time TU = L/U , and the inequality ϑ� TQ

may often be violated. In the case of a first-order reaction [Q(c) = k1c], we have TQ = 1/k1 and, for the diffusion
model to be applicable, the limiting inequality ϑk1 � 1 must be fulfilled. The worsened accuracy in calculations
by the diffusion model compared to that in calculations by the master equation of convective diffusion, when the
relation ϑk1 = O(1) or ϑk1 � 1 holds, was established in [5, 6]. Under the same conditions, the relaxation model
also yields satisfactory results if ϑk1 � 1.

Consider some examples in which one of the inequalities ϑ� TU or ϑ� TQ is violated. The case of ϑ� TQ

and εU = O(1) is of no interest because, here, we have only an insignificant simplification of the proposed model
[namely, the term εQΦ′(C) in Eq. (2.2) can be omitted]. More interesting is the case in which the inequality ϑ� TU

holds and the relation ϑ � TQ is violated. Then, Eq. (2.2) yields the Fick law in which the diffusion (dispersion)
coefficient depends on the concentration of the target substance: j = −εKk(z)[1 + εQQ

′(C)]−1 ∂C/∂z. We write
the dispersion equation following from Eq. (1.12) in dimensional form

∂C

∂τ
+ U

∂C

∂x
+Q(C) =

∂

∂x

(
D0(C, x)

∂C

∂x

)
, (2.5)

where D0(C, x) = D∗(x)/[1 + ϑQ′(C)] +D is the modified dispersion coefficient.
Yet, it should be noted that the quantity D0(C, x) in (2.5) can be regarded as a coefficient analogous to

the diffusion coefficient only if D0(C, x) > 0 in the region under consideration, which implies that the inequality
1 + ϑQ′(C) > 0 or 1 + ϑQ′(C) < −D∗(x)/D must be fulfilled, since both the Taylor coefficient D∗ and the
diffusivity D are always positive. The first inequality can be violated if the kinetic function Q(C) sharply decreases
somewhere [Q′(C) < −1/ϑ]. The second inequality is violated if D∗ � D, which is normally the case in practice.
For the case with an autocatalytic source of the substance considered in [14, 15], we have Q(C) = bC/(g + C)2

(b > 0, g > 0), and the modified dispersion coefficient D0(C, x) is always positive in the region C > 0, provided
that the condition bϑ < 27g2 is fulfilled. Otherwise, with a sufficiently high value of D∗(x)/D in the region of
positive concentrations, the coefficient D0(C, x) is negative over a certain interval of concentrations. In this case,
the passage from the relaxation to the diffusion model seems to be unreasonable. Note that the dependence of the
dispersion coefficient on the parameters of the mass source for a first-order chemical reaction was mentioned in [12].

3. The Choice of the Function R in the Galerkin Method. The system of functions of the Galerkin
method should be matched to additional conditions, solution properties, etc. A proper choice of basic functions of
the method can provide a better approximation to the exact solution and allows one to consider a smaller number
of equations. These functions should be chosen as simple as possible, so that the integrals could be integrated
analytically. In the present work, the function R was chosen in the form of a polynomial satisfying the largest
possible number of conditions matching a particular problem under consideration.

In addition to the fulfillment of conditions (1.11), it is desirable that the dispersion coefficients of the diffusion
model (1.8) in their limiting form be coincident with the dispersion coefficients of the relaxation model:

〈ψ2〉 = DK2ϑ = 〈uR〉2/〈(R′)2〉.

Nonetheless, by virtue of the Cauchy–Bunyakovskii inequality and by the definition (1.9) of the stream function,
we have

〈uR〉2 =
(ψR
h

∣∣∣h
0
− 〈ψR′〉

)2

= 〈ψR′〉2 6 〈ψ2〉〈(R′)2〉,

i.e., the dispersion coefficient in the diffusion model, given by (1.8), is greater than the dispersion coefficient in the
present model. Equality between these coefficients is possible if the functions ψ and R′ vary in proportion to each
other. Yet, the stream function generally depends on two coordinates, whereas, for convenience, the function R(R′)
is chosen to depend only on y. In a particular case of the Poiseuille flow in a plane channel, the stream function
depends only on y, and we can make the dispersion coefficients be coincident, at least, in this particular problem.
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Here, the stream function can be expressed in terms of y as the polynomial ψ = Uh(3η2− 2η3− η), where η = y/h.
We set the latter expression, taken with an indefinite multiplier, equal to R′(y), perform integration, and use two
integral conditions (1.11); then, we find the constant of integration and the indicated multiplier. In this way, we
obtain the following expression for the function R:

R(y) =
√

7/3 (1 + 60η3 − 30η4 − 30η2), η = y/h. (3.1)

Formula (3.1) allows one to find the general expression for the relaxation time ϑ [see (1.14)]:

ϑ = h2/(40D).

4. Hyperbolic System of Transport Equations. We assume that Pe � 1, and the coefficient K is not
constant but is separated from zero by a certain interval. Then, the right sides of the equations in the dimensional
system (1.12), (1.13) and in the dimensionless system (2.1), (2.2) can be neglected. Following [16], we establish the
main properties of the system thus obtained. To this end, we write the system in the matrix form, isolating terms
with derivatives, and find the eigenvalues of the resultant matrix [16]. We write system (1.12), (1.13) with a zero
right side as

∂S

∂τ
+A(x)

∂S

∂x
+BS = f, S =

(
C

j

)
, A(x) =

(
U K(x)

K(x) V (x)

)
, (4.1)

where the components of the matrices B and f can be determined from (1.12) and (1.13). These matrices are of
no help in establishing the main properties of the system; hence, they are not presented here. The eigenvalues λ of
the matrix A(x) are determined by the equation

|A(x)− λ(x)E| = 0 (4.2)

(E is a unit matrix). Expanding determinant (4.2), we obtain a quadratic equation with respect to λ:

λ2 − (U + V )λ+ ∆ = 0, ∆ = UV −K2. (4.3)

The discriminant of (4.3) is (U − V )2 + 4K2. This discriminant is always positive and, hence, the roots of (4.3) are
real-valued and not multiple, i.e., system (4.1) is of hyperbolic type. The key role in setting additional conditions
for this system belongs to the parameter ∆ = UV −K2 equal to the determinant of the matrix A(x).

Let the mass-transfer process proceeds in the region x ∈ (0, L). For definiteness, the x direction is chosen
to coincide with the direction of the mean-velocity vector, i.e., U > 0. It is easy to see that the largest root
of (4.3), λ+ = 0.5{U + V + [(U − V )2 + 4K2]1/2}, is always positive, whereas the sign of the second root, λ−
= 0.5{U + V − [(U − V )2 + 4K2]1/2}, coincides with that of ∆. Three cases are possible: ∆ > 0, ∆ < 0, and ∆ = 0
at some point x.

Case 1: ∆ > 0 at all points x ∈ (0, L). In this case, the slope of both characteristics (the sign of wave
velocities) dx±/dτ = λ±(x) is positive; two boundary conditions for system (4.1) are, therefore, to be posed at
the left boundary of the region (x = 0) and no condition at x = L. This variant of the system with constant
coefficients, which refers to substance spreading in the Poiseuille flow in a round pipe, was examined by Dil’man
and Kronberg [5, 6].

We show that ∆ > 0 in the case of a unidirectional (directed along the x axis) liquid flow with u(x, y) > 0.
In the case of a turbulent liquid flow, the function u(x, y) is understood as an averaged (fluctuation-free) value of
the flow velocity. For this to become evident, note that the inequality ∆ > 0, i.e., UV > K2, for u > 0 is equivalent
to the integral Cauchy–Bunyakovskii inequality. Indeed,

K2 = 〈uR〉2 = 〈
√
uR

√
u〉2 6 〈u〉〈uR2〉 = UV,

since the square root of u is real.
In calculating the coefficients of the hyperbolic model, it was common practice [5, 6] to use the known

velocity profiles in piped flows in laminar and turbulent flow modes. In this case, u > 0 (for the turbulent motion,
this is the averaged velocity without turbulent fluctuations), i.e., in view of the aforesaid, ∆ > 0. This case was
examined in sufficient detail.

For all values of ∆, two families of characteristics emerge from the line τ = 0 into the region τ > 0, x ∈ (0, L)
under consideration. That is why two (initial) conditions should be posed at this line [16]. These conditions are
obtained by the averaging procedure (1.7) applied to the initial distribution of the concentration c0(x, y) (1.4),
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related to the Galerkin expansion (1.10). This can be easily verified since the standard procedure of the Galerkin
method (requirement of orthogonality of the residual resulting from the substitution of the Galerkin expansion into
some equality to the system of chosen functions) is equivalent to averaging of this equality sequentially multiplied
by each function of the Galerkin system. We have

C
∣∣∣
τ=0

= 〈c0〉, j
∣∣∣
τ=0

= 〈Rc0〉. (4.4)

The initial concentration is often assumed to be independent of the crossflow coordinate y. In the first relation
of (4.4), the averaging sign can be omitted, and the second relation yields, in view of (1.11), the equality j(x, 0) = 0.
The same assumptions are also normally adopted for the concentration of the substance at the inlet to the system,
c+(0, y, τ) = const(y) = c+(τ). We are going now to obtain the boundary conditions for system (4.1). To this end,
we apply the averaging procedure in the Galerkin method to the balance (conservation law) of the substance at the
inlet to the system:

u(0, y)c+(τ) = u(0, y)[C(0, τ) +R(y)j(0, τ)]. (4.5)

The direct averaging of (4.5) and subsequent averaging with the weight R(y) yield the system of linear equations
for C(0, τ) and j(0, τ)

UC(0, τ) +K(0)j(0, τ) = Uc+(τ), K(0)C(0, τ) + V (0)j(0, τ) = K(0)c+(τ) (4.6)

with the determinant ∆(0) > 0. We found from here that this system has a single solution of the form

C
∣∣∣
x=0

= c+(τ), j
∣∣∣
x=0

= 0. (4.7)

Case 2: ∆(0) = 0. In this case, only one system of characteristics λ+ emerges from the line x = 0 into the
region τ > 0, x ∈ (0, L), and no characteristics emerge from the line x = L. Here, relation (4.5) is to be used
to perform only one averaging, and the preference should be given to the averaging with the first function of the
Galerkin method, i.e., with the unit function. Thus, we obtain the first equality in (4.6):

(CU + jK)
∣∣∣
x=0

= Uc+(τ). (4.8)

Case 3: ∆(0) < 0. In this case, a system of characteristics λ+ emerges from the line x = 0 into the region
τ > 0, x ∈ (0, L). As in the second case, the boundary condition (4.8) is fulfilled. At the outlet from the system (at
x > L), similarly to the situation at the inlet to the system, we assume that the concentration c− does not depend
on y. We assume that the function c−(τ) is unknown. Constructing a system analogous to (4.6) in the cross-section
x = L and obtaining the single (for ∆ < 0) solution of the type (4.7), for the boundary conditions with known
functions to be constructed, we chose the second condition

j
∣∣∣
x=L

= 0 (4.9)

in addition to (4.8) for the hyperbolic system with ∆ < 0. Note that this variant (∆ < 0) is always the case for
stagnant caverns, for which U = 0 and ∆ = −K2 < 0.

The proposed boundary conditions (4.7) for ∆ > 0, (4.8) for ∆ = 0, and (4.8) and (4.9) for ∆ < 0 do not
exhaust all possible variants of boundary conditions; they are considered here because they are analogous to the
Dankwerts conditions

D∗
∂C

∂x

∣∣∣
x=0

= U [C − c+(τ)],
∂C

∂x

∣∣∣
x=L

= 0 (4.10)

widely used in the diffusion model. Recall that the diffusion model stems from the hyperbolic one in the lim-
iting situation (εU � 1, εQ � 1) where the flux is related to the gradient of mean concentration by the Fick
law j = −ϑK(x) ∂C/∂x. In the limiting transition, case 3 (∆ < 0) of the hyperbolic model is realized, and
formulas (4.8), (4.9) and the equality D∗ = K2(x)ϑ yield (4.10).

The diffusion model with the Dankwerts conditions (4.10) has gained widespread application in analyzing
many natural and technological processes. As was shown above, case 3 (∆ < 0) of the hyperbolic model proved to
be most close to this model, since it also represents a boundary-value problem. This circumstance seems to hamper
the practical application of the hyperbolic model that had initially emerged in the case of ∆ > 0 [5, 6], which refers
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Fig. 1. Flow over a cavity.

to the Cauchy problem with respect to the variable x [conditions (4.7)], despite the fact that the calculations by
the hyperbolic model proved to better agree with the exact solutions.

5. Calculation of the Coefficient of Mass Transfer between Cavities. As an example of using
system (1.12), (1.13), let us determine the coefficient of mass transfer between cavities; in this way, we generalize
the results of [17] obtained by the diffusion model. Here, we rely upon the relations between parameters normally
met in practice.

In view of (1.8), the diffusion model (1.6) contains the following inequality for the total dispersion coeffi-
cient:

D∗ +D > 2〈ψ2〉1/2,

i.e., the dispersion coefficient is restricted from below. Yet, the convective component of D∗ is considerably higher
than the molecular component D almost throughout the whole volume of the system, and only in those regions
where D∗ = 0 is the role of the coefficient D substantial. The latter necessitates consideration of the problem in the
boundary-layer approximation [17]. A similar situation arises in the analysis of the problem based on Eqs. (1.12)
and (1.13). Of importance are regions where the function K(x) vanishes (recall that D∗ = K2ϑ). The problem
will be considered for non-reacting flows in stagnant cavities (U = 0). Such a situation is realized, for instance,
when a cavity contains a flow whose flow pattern is given by the Lavrent’ev diagram [18], which implies that several
circulation zones can be observed (Fig. 1). The interface between the zones is assumed to be a straight segment at
x = 0 (normally, this boundary is somewhat bent). Everywhere in this line, we have u = 0. In the boundary-layer
approximation (K2

∗ϑ � D), in a vicinity of the line x = 0, we can restrict the consideration to the first terms of
the Taylor series for the functions K(x) and V (x). We have

K(x) = æx, V (x) = µx, æ =
〈∂u
∂x
R

〉∣∣∣
x=0

, µ =
〈∂u
∂x
R2

〉∣∣∣
x=0

. (5.1)

Next, we assume that æ 6= 0. This parameter can be zero if the derivative ∂u/∂x [or ∂v/∂y by virtue of continuity
equation (1.2)] is orthogonal at x = 0 to the second function R(y) of the orthogonal Galerkin system. If we restrict
the consideration to the analysis of the binomial expansion (1.10), then it seems not to be logical to relate the
derivative ∂v/∂y to higher Galerkin-expansion functions. That is why the case ∂v/∂y = const at x = 0 seems to
be realistic. From the no-slip condition at y = 0 and y = h, it follows, after integration over y, that v = 0. The
latter means that the interfacial line x = 0 is equivalent to a rigid boundary since, there, u = v = 0. The latter
is the case at the cavity bottom. A quadratic approximation of the function K(x) is necessary in analyzing mass
transfer at a rigid surface (with æ = 0), as well as at the surface moving with a velocity v = const along the y axis.
To calculate the coefficients æ and µ from the entire velocity field by formula (5.1), one has to know only the value
of v at the interface between the cells. Provided that a power approximation of v at x = 0 is used, it suffices only
to determine terms up to the order of y7 inclusive, since both the function R(y) and the function v(0, y) can be
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expanded into a system of orthogonal functions [Legendre polynomials with the passage to the interval (−1,+1)];
here, the polynomials of higher-than-seventh orders do not affect the calculation of µ, and the polynomials of
higher-than-third orders, the calculation of æ.

Thus, the system of mass-transfer equations under the above-made assumptions in the vicinity of the inter-
facial line between the circulation zones is

∂C

∂τ
+

∂

∂x
(æxj) = D

∂2C

∂x2
; (5.2)

∂j

∂τ
+ µx

∂j

∂x
+ æx

∂C

∂x
+

(µ
2

+
1
ϑ

)
j = D

∂2j

∂x2
. (5.3)

Since system (5.2), (5.3) contains solutions of the boundary-layer type, the boundary conditions for this system
are

C
∣∣∣
x→±∞

→ C±, j
∣∣∣
x→±∞

<∞, (5.4)

where C± is the concentration of the substance in neighboring cavities far from the interface. Similar problems were
previously discussed in [11, 17]; from these studies, we can conclude that mass transfer between the cavities can be
predicted over the time interval under consideration by using the quasi-stationary approximation; i.e., to calculate
the coefficient of transfer between the circulation regions, one should use the stationary solution of problem (5.2)–
(5.4). Here, the values of C± correspond, with acceptable accuracy, to the concentrations of the target substance
averaged over the circulation regions. Since the transport velocity at the interface between the cells is parallel to the
interface, the mass transfer between the cells is controlled by molecular diffusion. For the coefficient ζ of exchange
of the substance between the cells through the boundary x = 0, following [17], we derive the formula

ζ =
D

lδC

dC

dx

∣∣∣
x=0

, δC = C+ − C−, (5.5)

where l is the length of the cavity.
We write the stationary equations (5.2), (5.3) in dimensionless variables:

q =
j

δC
, H =

C

δC
,

ξ

x
=

√
æ

D sin 2ϕ
, 2ν + 1 =

sin 2ϕ
ϑæ

. (5.6)

The angle ϕ is defined by two equations

sin 2ϕ =
2æ√

µ2 + 4æ2
, tan 2ϕ =

2æ

µ
, (5.7)

where the square root is to be understood arithmetically. Generally, if the sign of æ is opposite to that of µ, we
can assume that ϕ ∈ (−π/2, π/2). Thus, ϕ is a single-valued function of æ and µ. From (5.2), (5.3), and (5.6), we
obtain

sin 2ϕ
d

dξ
(ξq) =

d2H

dξ2
; (5.8)

ξ sin 2ϕ
dH

dξ
+ 2ξ cos 2ϕ

dq

dξ
+ [2ν + 1 + cos 2ϕ]q =

d2q

dξ2
. (5.9)

The first integral of (5.8) is

ξq sin 2ϕ+A =
dH

dξ
, (5.10)

where A is the constant of integration, related to the mass-transfer coefficient ζ [see (5.5)]; the quantity A is, in a
sense, the dimensionless value of ζ [see (5.12)]. We make the change q sin 2ϕ = −AZ; then, from (5.9), we obtain
the following equation for the new sought function Z:

d2Z

dξ2
= 2ξ cos 2ϕ

dZ

dξ
+ [2ν + 1 + cos 2ϕ+ ξ2 sin2 2ϕ]Z − ξ sin2 2ϕ. (5.11)

536



We integrate (5.10) within infinite limits; then, using (5.10) at ξ = 0, we obtain the following expression for the
mass-transfer coefficient ζ in (5.5):

1
A

=
1
lζ

√
æD

sin 2ϕ
=

∞∫
−∞

[1− ξZ(ξ)] dξ. (5.12)

Formula (5.12) shows that, in calculation of ζ, only the odd component of the function Z(ξ) in its expansion
Z(ξ) = 0.5[Z(ξ) + Z(−ξ)] + 0.5[Z(ξ)− Z(−ξ)] is important. Therefore, we first find the odd solution of (5.11).

We make the change of the sought function Z(ξ) = Y (ξ) exp [(ξ2 cos 2ϕ)/2]. For the new function Y (ξ), we
obtain

d2Y

dξ2
− (2ν + 1 + ξ2)Y + ξ sin2 2ϕ exp

(
− ξ2 cos 2ϕ

2

)
= 0. (5.13)

This equation is related to Hermit functions. Its odd solution, bounded at infinity, has the form

Y (ξ) = Y1(ξ)

ξ∫
0

Y2(x)σ(x) dx+ Y2(ξ)

∞∫
ξ

Y1(x)σ(x) dx,

σ(x) = x sin2 2ϕ exp
(
− x2 cos 2ϕ

2

)
,

(5.14)

where

Y1(x) = exp
(
− x2

2

)
H−1−ν(x),

Y2(x) = Y1(x)

x∫
0

dξ

Y 2
1 (ξ)

=
Γ(1 + ν)
2−ν

√
π

exp
(
− x2

2

)
[H−1−ν(−x)−H−1−ν(x)].

(5.15)

Here Γ(x) is the Euler gamma-function and Hν(x) is the Hermit function of the corresponding index [19]. For-
mulas (5.14) and (5.15) allow us to establish the properties of the function Y required in the limiting cases for
subsequent calculations.

Let us obtain the expansion of Y in Hermit polynomials. The functions Sk = exp (−ξ2/2)Hk(ξ), where
k = 0, 1, 2, . . ., are known to satisfy the equations [19]

d2Sk

dξ2
+ (2k + 1− ξ2)Sk = 0. (5.16)

We multiply Eq. (5.16) by Y and Eq. (5.13) by Sk and subtract the results. Next, we integrate the resultant
expression with respect to ξ between infinite limits, taking into account the asymptotic behavior of the functions Y
and Sk as ξ → ±∞. As a result, we obtain the relation

2(ν + k + 1)

∞∫
−∞

Y Sk dξ = sin2 2ϕ

∞∫
−∞

ξSk dξ exp
(
− ξ2 cos 2ϕ

2

)
(5.17)

that relates the coefficients of expansion of the functions Y (ξ) exp (ξ2/2) and ξ exp [ξ2/2 − (ξ2 cos 2ϕ)/2]
= ξ exp [ξ2 sin2 ϕ] into the series in Hermit polynomials with the weight exp (−ξ2). In [19], the following expansion
is reported, written in variables convenient for the present consideration:

exp (x2 sin2 ϕ) =
1

cosϕ

∞∑
k=0

tan 2k ϕ

22k

H2k(x)
k!

, x ∈ (−∞,∞), |ϕ| 6 π

4
. (5.18)

We differentiate both parts of (5.18) with respect to x and use the formula H ′
n(x) = 2nHn−1(x) of the theory of

Hermit polynomials [19] and relation (5.17); then, we obtain the expansion of Y in Hermit polynomials:

Y exp
(ξ2

2

)
=

sin2 2ϕ
8 cos3 ϕ

∞∑
k=0

tan 2k ϕ

22kk!
H2k+1(ξ)
k + 1 + ν/2

, ξ ∈ (−∞,∞), |ϕ| < π

4
. (5.19)
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The permissibility of termwise differentiation of (5.18) is justified by absolute convergence of the series of derivatives
for |ϕ| < π/4; this convergence can be established using the asymptotic formulas for Hermit polynomials [19].

Without loss of generality, according to (5.7) the variable ϕ, irrespective of the signs of the parameters æ

and µ, can vary from −π/2 to π/2. However, in the case of stagnant cavities under consideration (U = 0), the
direction of the x axis can be not related to the direction of the mean velocity vector. Provided that the x direction
is chosen such that the parameter µ be nonnegative [under the inversion of the x direction, according to (5.1), the
signs of æ and µ change to the opposite ones], we can restrict the consideration to the interval ϕ ∈ [−π/4, π/4];
the end points of the interval correspond to µ = 0. Since relations (5.18) and (5.19) are even with respect to the
variable ϕ, we can restrict the analysis to the interval ϕ ∈ (0, π/4] (recall that the case æ = 0 was excluded from
the consideration; for this reason, the case ϕ = 0 is also excluded). This interval of ϕ refers to æ > 0. Next, we
assume that ϕ ∈ (0, π/4); in this case, the series in (5.18) and (5.19) converge.

Using the obtained results (5.14), (5.15), and (5.18), we can derive the following representations of Z in the
region of low and high values of the main argument ξ:

Z =
sin2 2ϕ
2(2 + ν)

F
(
1,

3
2
, 2 +

ν

2
, sin2 ϕ

){
ξ +

ξ3

6
[3 cos 2ϕ+ 2ν + 1]

}
− ξ3 sin2 2ϕ

6
+ o(ξ5), ξ → 0,

Z =
1
ξ

{
1− 2[ν + sin2 ϕ]

ξ2 sin2 2ϕ
+O

( 1
ξ4

)}
, ξ →∞.

(5.20)

Here F (α, β, γ, z) is a hypergeometric function of the listed arguments.
Without loss of generality, the function H in (5.8) can be assumed, as well as Z, an odd function of ξ.

Indeed, taking into account relation (5.4) and the structure of Eqs. (5.2), (5.3), and (5.8), we can make the change
of the function C by the formula C = (C+ +C−)/2 +C∗, where the boundary condition over the variable ξ for the
new sought function C∗ becomes odd-symmetric: C∗ → ±δC/2 for x → ±∞; since C± are constant, the general
appearance of the equations remains unchanged. For this reason, we assume that the transformation C → C∗ is
accomplished and use the function C∗ (or, more precisely, H) as the sought function, omitting the asterisk.

Using the normalization factor A in the expression H = AW , with Eq. (5.10) taken into account, we write
the equation for W

dW

dξ
= 1− ξZ, (5.21)

which yields, by means of expansions (5.20), the following relations:

W = ξ − sin2 2ϕ
2(2 + ν)

F
(
1,

3
2
, 2 +

ν

2
, sin2 ϕ

){ξ3
3

+
ξ5[3 cos 2ϕ+ 2ν + 1]

30

}
+
ξ5 sin2 2ϕ

30
+ o(ξ7), ξ → 0,

W =
1

2A
− 2[ν + sin2 ϕ]

ξ sin2 2ϕ
+O

( 1
ξ3

)
, ξ →∞.

(5.22)

The parameter A in (5.22) will be defined below.
The analog of (5.19) for Z, i.e., the expansion of W (ξ) in Hermit polynomials, obtained by formulas (5.18),

(5.19), and (5.21), is

W =
Z

2 sin2 ϕ
+

(1 + ν) exp (−ξ2 sin2 ϕ)
4 cos3 ϕ

∞∑
k=0

tan 2k ϕ

2k

H2k+1(ξ)
(2k + 1)!!

k∑
j=0

(2j − 1)!!
2j(j + 1 + ν/2)j!

,

ξ ∈ (−∞,∞), |ϕ| < π/4, (2j − 1)!! = 3 · 5 · · · (2j − 1), (−1)!! = 1.
(5.23)

The functions Z(ξ) and W (ξ) are plotted for various values of ϕ and ν in Figs. 2 and 3. In calculating W , it
is more convenient to use, instead of (5.23), the numerical integration procedure for Eq. (5.21). From Figs. 2 and 3,
it follows that a decrease in ϕ [see (5.7)] affects the shape of the curves in the same manner as an increase in ν does
[see (5.6)]. Curves 2 and 5 in both figures are the same.
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Fig. 2. Functions Z(ξ) (curves 1–3) and W (ξ) (curves 4–6) for ν = 2 and ϕ = π/7 (1 and 4), π/12 (2
and 5), and π/24 (3 and 6).

Fig. 3. Functions Z(ξ) (curves 1–3) and W (ξ) (curves 4–6) for ϕ = π/12 and ν = 0.2 (1 and 4),
2 (2 and 5), and 10 (3 and 6).

To calculate integral (5.12), we represent the unity in the integrand as 1 = exp (−ξ2 sin2 ϕ) exp (ξ2 sin2 ϕ) and
use expansion (5.18) for exp (ξ2 sin2 ϕ). The term ξZ(ξ) in the integrand in (5.12) can also be transformed, with the
help of formulas of the theory of Hermit polynomials and using series (5.19), to the expansion in functions H2k(x).
As a result, we obtain the expression

1
A

=

∞∫
−∞

[1− ξZ(ξ)] dξ =
ν + 1
2 cosϕ

∞∫
−∞

exp (−ξ2 sin2 ϕ) dξ
∞∑

k=0

tan 2k ϕ

22kk!
H2k(ξ)

k + 1 + ν/2

=
ν + 1
2 cosϕ

∞∑
k=0

tan 2k ϕ

22k(k + 1 + ν/2)k!

∞∫
−∞

exp (−ξ2 sin2 ϕ)H2k(ξ) dξ

=
ν + 1
sin 2ϕ

∞∑
k=0

Γ(k + 1/2)Γ(k + 1 + ν/2)
Γ(k + 2 + ν/2)k!

=
ν + 1
sin 2ϕ

Γ(1/2)Γ(1 + ν/2)
Γ(2 + ν/2)

F
(1

2
, 1 +

ν

2
, 2 +

ν

2
, 1

)
=

2πΓ(1 + ν/2)
Γ(1/2 + ν/2) sin 2ϕ

.

Here the formulas known from the theory of the gamma function and the hypergeometric function are used. The in-
tegral of exp (−ξ2 sin2 ϕ)H2k(ξ) between the infinite limits was calculated in [19]. The permissibility of permutation
of integration and summation follows from the absolute convergence, which takes place if |ϕ| 6 π/4.

Thus, for the mass-transfer coefficient ζ in (5.12) we obtain the expression

ζ =
√

æD sin 2ϕ
2πl

Γ(1/2 + ν/2)
Γ(1 + ν/2)

. (5.24)

In addition, the expansion of the function W in (5.22) for ξ →∞ is now completely determined.
The limiting case (ν → ∞ and µ → 0) yields the diffusion model of [17]. Using the asymptotic formula for

the ratio of gamma-functions for ν →∞ Γ(1/2 + ν/2)/Γ(1 + ν/2) ∼= (2/ν)1/2 [19], we obtain

ζ = æ
√
Dϑ/(πl).
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Fig. 4. Function f(z) that describes the mass-transfer coefficient ζ in (5.24).

The function f(z) = Γ(1/4 + z)/Γ(3/4 + z), which describes the non-elementary part of the mass-transfer
coefficient, is plotted in Fig. 4; z = ν/2+1/4 and f = 2πlζ/[æD sin 2ϕ]1/2). From the formulas of the theory of the
gamma-function [19], it follows that the function f(z) monotonically decreases with increasing z. Indeed,

f ′(z) = −f(z)

1∫
0

xz−3/4 dx

1 + x1/2
< 0,

since both the integral and the function f(z) are positive in the interval z ∈ (0,∞); hence, f ′(z) < 0 and the
function f(z) decreases.

6. System of Several Adjacent Circulation Regions. Provided that the system has several circulation
cells with identical parameters, we obtain, following [17], a system of ordinary differential equations for the cell-
average concentrations of the substance ck:

dc1
dτ

= ζ(c2 + c+ − 2c1),
dcN
dτ

= ζ(cN−1 − cN ),

dck
dτ

= ζ(ck+1 + ck−1 − 2ck), k = 2, 3, . . . , N − 1.
(6.1)

It is assumed here that the last, Nth cell borders on the wall that supplies no substance into the cell, while the
substance with some concentration c+(τ) enters the first cell; in other words, it can be imagined that there is an
additional zeroth cell bordering on the first cell; in the zeroth cell, the concentration is known and varies according
to the law c+(τ). System (6.1) should be supplemented with the following general initial conditions:

ck

∣∣∣
τ=0

= c0k, k = 1, 2, . . . , N. (6.2)

It is not difficult to extend system (6.1), (6.2) to the case of more complex situations, in which the transfer
coefficients ζ can be different at different interfaces between the cells and the interaction of the boundary cells j = 1
and j = N with the ambient medium is more complicated.

Conclusions. The main result of the present study is the derivation of system (1.12), (1.13) describing the
wave [with zero right sides of (1.12), (1.13)] model with additional conditions (4.4), (4.7)–(4.9). This system extends
the results of [5–7] to the case of transfer processes with two-dimensional flows and can be used to analyze natural
and technological processes in flow apparatus. In particular, this model may prove useful in analyzing chemical
reactors. Simultaneously, the hyperbolic (wave) model includes the diffusion model as a particular case, i.e., this
model has a broader field of applicability.
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